Multivariate Time Series Classification with Temporal Abstractions

نویسندگان

  • Iyad Batal
  • Lucia Sacchi
  • Riccardo Bellazzi
  • Milos Hauskrecht
چکیده

The increase in the number of complex temporal datasets collected today has prompted the development of methods that extend classical machine learning and data mining methods to time-series data. This work focuses on methods for multivariate time-series classification. Time series classification is a challenging problem mostly because the number of temporal features that describe the data and are potentially useful for classification is enormous. We study and develop a temporal abstraction framework for generating multivariate time series features suitable for classification tasks. We propose the STF-Mine algorithm that automatically mines discriminative temporal abstraction patterns from the time series data and uses them to learn a classification model. Our experimental evaluations, carried out on both synthetic and real world medical data, demonstrate the benefit of our approach in learning accurate classifiers for time-series datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining biomedical time series by combining structural analysis and temporal abstractions

This paper describes the combination of Structural Time Series analysis and Temporal Abstractions for the interpretation of data coming from home monitoring of diabetic patients. Blood Glucose data are analyzed by a novel Bayesian technique for time series analysis. The results obtained are post-processed using Temporal Abstractions in order to extract knowledge that can be exploited "at the po...

متن کامل

Review: Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data

Iyad Batal et. al. in the paper ”Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data” proposed a pattern mining approach for multivariate health data time series which is then used for classification and prediction of diseases. To extract the patterns, they assigned a fuzzy value in time intervals instead of numerical values for each variable. Then, they concate...

متن کامل

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...

متن کامل

Comparative Evaluation of an Interactive Time-Series Visualization that Combines Quantitative Data with Qualitative Abstractions

In many application areas, analysts have to make sense of large volumes of multivariate time-series data. Explorative analysis of this kind of data is often difficult and overwhelming at the level of raw data. Temporal data abstraction reduces data complexity by deriving qualitative statements that reflect domain-specific key characteristics. Visual representations of abstractions and raw data ...

متن کامل

A Temporal Abstraction Framework for Classifying Clinical Temporal Data

The increasing availability of complex temporal clinical records collected today has prompted the development of new methods that extend classical machine learning and data mining approaches to time series data. In this work, we develop a new framework for classifying the patient's time-series data based on temporal abstractions. The proposed STF-Mine algorithm automatically mines discriminativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009